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Preface

Joseph Zeidner, Cecil Johnson, and colleagues developed a proposed two-tier classification
system for Army enlisted Soldiers. A recent ARI report (ARI Study Report 2005-1) documented
an independent analysis and evaluation by scientists at the Human Resources Research
Organization (HumRRO) of key components of this system. Zeidner and Johnson took issue
with several findings / conclusions in this report and requested an opportunity to respond. This
reply presents their response to the HumRRO evaluation. Although it is unusual to present a
critique of one ARI report in another, it is ARI's view that this report elucidates key aspects of
Zeidner and Johnson's Differential Assignment Theory and is valuable for that purpose. The
points presented in this report are best understood if the reader has already read some of Zeidner,
Johnson and colleagues' earlier ARI reports (1992, 1997, 2000, 2003a, 2003b) on Differential
Assignment Theory and the ARI Study Report in which HumRRO's evaluation is presented
(Diaz, Ingerick, & Lightfoot, December 2004).
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Executive Summary

Differential assignment theory (DAT) and research findings bearing on initial personnel

classification from a number of simulation experiments, based on large samples of Soldiers with

both operational and experimental test scores and MOS specific performance scores, is drawn

upon in a critical review of recent HumRRO research (ARI Study Report 2005-1). The report

being reviewed recommends using nine job families with corresponding best-weighted test

composites that have been corrected for restriction in range to the recruit population and then

converted to Army standard scores. This is the second tier of the two tiered classification system

(TTCS) proposed by the current investigators. The HumRRO authors primarily examine

differential validity and validity coefficients with standard errors to reach the conclusion that

there is no need for the first tier of the TTCS. A number of issues on which we disagree with the

HumRRO authors are listed and briefly introduced below.

First, the HumRRO authors argue that the number of job families, the approach used in

forming these families, and standardization vs. non-standardization of composite scores, should

be evaluated in terms of effect on validity and differential validity coefficients and the standard

error of these indices - in contrast to our reliance on comparison of the mean predicted

performance (MPP) computed in independent cross samples to reflect the various experimental

conditions.

Second, this reply rejects the HumRRO authors' recommendation to use job families

identified by judgment and administrative considerations instead of clustering MOS using

Horst's differential validity method to maximize the MPP obtainable by optimal assignment.

Third, this reply rejects the HumRRO authors' claim that it is essential to convert

composite scores used for initial classification and assignment into Army standard scores in

order to achieve a desirable quality distribution in critical MOS. We maintain that the desired

quality distribution of MPP across MOS can be obtained by using least square estimates of the

criterion as unstandardized scores to make optimal assignments while applying a quality

constraint - thus achieving a higher average MPP and a maximum fit to the desired quality

distribution.
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Fourth, the HumRRO authors claim that the increased MPP that would result from the

changing of job families from 9 judgmentally formed ones to a larger set of 20 to 40 optimally

clustered MOS would provide little or no benefits. We claim that the benefits in terms of

increased performance would be worth millions of dollars. Years of research experience tell us

that the magnitude of these benefits obtainable from improving the personnel classification

process could never be achieved by improving the selection battery with new and possibly more

or more difficult-to-administer predictor tests.

We agree with the HumRRO authors that our triple cross-validation for removing

inflation due to sampling error from estimates of MPP could be further improved. More stable

estimates of MPP could be computed by using all of the 240,000 observation cases available to

compute each set of MPPs. Also, another source of sampling error that is introduced by

permitting overlap between the sample used to cluster MOS into families and both the analysis

and evaluation samples could be eliminated. These research design issues are discussed in the

reply.
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Evaluation of Alternative Aptitude Area (AA) Composites and Job
Families for Army Classification: A Reply

Introduction

This reply is a critique of a HumRRO report by Diaz, Ingerick, and Lightfoot,

"Evaluation of Alternative Aptitude Area (AA) Composites and Job Families for Army

Classification", ARI Study Report 2005-01 (December 2004).1 In our view this report reflects a

lack of understanding of aspects of several relevant topics including: (1) the two tiered

classification system (TTCS) as proposed by Zeidner, Johnson, and colleagues; (2) the

differential assignment theory (DAT) utilized in the design and evaluation of the TTCS; (3) the

magnitude of the impact on classification efficiency of general mental aptitude (GMA) as

compared to the remaining predictors of job performance; and (4) the extent of the decrease in

classification efficiency when assignments are made by scores converted to Army standard

scores. Critical empirical relationships among variables essential to the design of a TTCS are

also discussed, including the necessity of using predictor scores that are least square estimates of

each MOS criterion as the basis of making optimal assignments to jobs.

We start with a summary of TTCS and DAT topics, and then discuss the specific

instances in which the indicated report ignores or misrepresents the objectives or characteristics

of the TTCS or violates one or more principles of DAT. We then discuss where and how a

number of HumRRO recommendations are inconsistent with DAT, followed by what should be

In an earlier report (Diaz, Ingerick, and Lightfoot, August, 2004) the authors verified Zeidner et al. research
results, including "best weights" for the seven operational ASVAB subtests used to form the nine Army composites
which correspond to nine operational job families currently used in the initial assignment of new Soldiers.



done in the way of further research before even considering accepting certain HumRRO

recommendations.

The Two Tiered Classification System (TTCS)

In a recent operational change to the Army personnel system, the integer-weighted test

composites for the nine operational job families were replaced by empirically weighted

composites, using all seven Armed Services Vocational Aptitude Battery (ASVAB) subtests for

each family. These composites are corrected for restriction in range in the youth population and

then converted to yield Army standard scores.

Benefits provided by this change lie primarily in the greater validity provided, in contrast

to the validity provided by the three / four subtest integer-weighted composites. These benefits

also apply to personnel selection, classification and assignment, to vocational counseling of new

Soldiers, application of minimum cut scores, and other administrative purposes.

A major drawback still existing after this change is that the nine job families were formed

entirely by judgment and administrative considerations. Thus, these best weighted composites

cannot provide maximum classification efficiency (as measured by mean predicted performance,

MPP), in comparison to what is possible when MOS are clustered into families using Horst's

differential validity method (Horst, 1954). A second drawback stems from the reduction in

classification efficiency that results from converting the composite weights to provide equal

means and standard deviations (SDs) in the youth population across all nine composites. This

also causes a major reduction in classification efficiency. And a third drawback follows from the

use of only nine job families (m = 9) and corresponding composites. This results in a costly

reduction in MPP as compared to what would be provided by a larger number of job families,
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formed with optimal clustering techniques and corresponding best weighted composites. The

Two-Tiered Classification System (TTCS) is designed to overcome these drawbacks.

The TTCS is designed for use in the classification of recruits from the Army input

population that is created through use of AFQT quality marks, academic accomplishments,

justice system records, etc. to select applicants from a youth population. Recommended

assignments for initial classification and assignment of recruits are obtained by using 25 to 150

best-weighted test composites of seven ASVAB tests; these composites correspond to the same

number of first tier job families. Recommended assignments are optimized to maximize the

MPP of those for which assignments are being made with a constrained linear programming

algorithm that would exactly fill all training seats if the recruits accept their recommended

assignments. A revised set of quotas could be utilized to reflect those who reject their

recommendations.

The first tier TTCS composite weights are corrected to the Army input population from

which the sample of assignees is drawn. No purpose would be served by standardizing first tier

composites or composite weights to the youth population, and thereby requiring all composites to

have means of 100 and standard deviations of 20 (or requiring all weights to be positive) since

these composites are invisible to counselors, administrative personnel and examinees alike in the

classification and assignment process. Moreover, MPP is considerably increased by correcting

first tier weights for restriction in range to the Army input population, requiring each composite

to have a mean of zero and standard deviation equal to the validity coefficient of each composite

22

in the Army input population2, and allowing negative weights.

2 As contrasted with second tier composites which are converted to Army standard scores.
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The selection process that yields an Army input population uses AFQT criteria to select

Army applicants from the youth population, along with a consideration of academic

achievement, health, and criminal behavior. The use of AFQT in the initial selection into the

Army can be supplemented by using cut scores on nine second tier composites. The TTCS calls

for the second tier composites (which have been standardized to the youth population, where

each composite has a mean of 100 and a standard deviation of 20 and composite weights are

required to be positive) to be used in a subsequent selection type process in which eligibility for

each of the 150 first tier job families is determined by use of MOS specific cut scores on one of

the nine second tier composites that corresponds to the job family which contains the MOS being

considered. The scores for these nine second tier composites are visible to counselors,

administrative personnel, and examinees and it is essential that the composite weights for the

composites of this visible tier be positive only, have equal means and equal standard deviations

for all nine composites. The second tier composites are intended for use by counselors,

administrative personnel and by new Soldiers in self-evaluation of their own aptitudes for

alternative military training and eligibility for Army school programs.

Differential Assignment Theory (DAT) and Its Application

Empirically Determined Relationships Among TTCS Variables

H. Brogden (1955) established that the most efficient test composites for assignment of

personnel are least square estimates of predicted performance composites (PPs) of each job

family criterion, and P. Horst (1954) provided a method for aggregating jobs into job families to
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maximize the average differential validity for a set of job families, thus maximizing potential

MPP for that set. Brogden (1959) provided a formula for estimating MPP as a function of the

number of job families (m), the mean of the validity coefficients of the associated best weighted

composites (R), and the mean of the inter-correlation coefficients among the composites (r):

BMPP = f(m) R (1- r) '. The MPP maximized by Horst's optimal job clustering procedure can

be expressed as BMPP when one makes the same assumptions as Brogden made to derive BMPP

(Johnson & Zeidner, 1995).

The Brogden estimate of MPP pertains to an optimal assignment of N Soldiers to m job

families using m assignment composites that are each LSEs of the m separate criterion variables.

Brogden provides a table for f(m) for values of m of 1 through 15. The variable R is the average

of m correlation coefficients between LSEs and criterion scores, and r is the average of m (m-1)

inter-correlation coefficients among the LSEs. This formula provides a good approximation of

empirically determined MPP for small values of m but provides an under-estimate of MPP for

larger values of m. Both this formula and empirical results indicate that high values of MPP can

be obtained for even high values of r.

Since R is the average of cross-validated validity coefficients, N (the size of the analysis

sample) is positively correlated with the magnitude of R. For any set of jobs, the correlation

between sample size and size of unbiased validity coefficients is positive (but low unless sample

sizes are much lower than we used in evaluating the TTCS).

The value of r for a specified set of jobs decreases as the value of m increases for this

fixed set of jobs. The three variables, r, R and m, are all predictors of MPP with a fairly

complicated non-linear relationship between them. The comparison of the benefits between
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alternative sets of job families must be in terms of MPP rather than in terms of r, R ,m, or size of

analysis samples (N), evaluated separately or in pairs.

Empirical results for a set of 250 MOS initially clustered into 150 families (most of

which are single MOS) show that MPP increases steadily as m increases to an unknown point

between 66 and 85, then decreasing gradually out to the 150 family point. (Zeidner, Johnson,

Vladimirsky & Weldon, August, 2000).

Triple Cross- Validation Design

An unbiased estimate of MPP for a designated set of assignees, tests, and job families can

be computed through use of a triple cross-validation design. This design as used by Zeidner and

colleagues consists of the following components or processes as described below.

A data set of 260,000 Soldiers where each Soldier's record contains MOS, ASVAB test

scores, gender and race, and a Skill Qualifications Test (SQT) criterion score, is randomly

divided into two samples, one containing 240,000 cases and a hold-out sample containing 20,000

cases. The 240,000 cases are first divided into separate MOS sub samples. Each of these sub-

samples is then randomly divided into Sample A and Sample B, each containing 120,000 cases

in total. The 20,000 cases provides a cross validation sample, Sample C, which is divided into

20 sub-samples without regard to the MOS assigned to each Soldier in the sample.

Sample A is used as an analysis sample, as a sub-sample separately for each MOS cluster

(i.e., job family) in which regression weights are computed for the best weighted assignment

composites associated with each job family. Each Sample A sub-sample has a parallel Sample B

sub-sample.
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The Sample B sub-samples specific to each job family are used as evaluation samples, in

which regression weights for tests are computed to provide least square estimates of the MOS

specific criterion within each job family.

As noted above, Sample C is a cross sample in which the regression weights computed in

Sample A, or operational weights for one experimental condition, are applied to the Sample C

test scores to produce assignment composite (AA) scores for each individual. As described

below this sample is used to optimally assign individuals to job families and to subsequently

compute a value of MPP for a specified set of job families, separately for each Sample C sub-

sample of 1,000 cases. The comparable regression weights computed in Sample B are applied to

these same Sample C test scores to produce predicted performance (PP) scores in each job family

for each individual in Sample C.

The PP score for the job family to which each individual is tentatively assigned by the

optimal assignment algorithm (constrained linear programming algorithm) is attached to that

individual for the purpose of computing MPP. The mean across sub-samples of all such PP

scores in each Sample C sub-sample is designated as the value of MPP for that set of job families

in each sub-sample. The MPP values for each of the twenty Sample C sub-samples are averaged

to provide the MPP, and the standard error of these estimates, for each set of job families within

an experimental condition.

As noted above, a set of 240,000 Soldiers was divided into job family sub-samples and

each such job family randomly divided into two equally sized sub-samples. Thus, one half of

each job family was placed into Sample A and the other half into Sample B. Sample A and

Sample B were used, respectively, as analysis and evaluation samples. The roles of Samples A

and B were then reversed. As the roles of A and B are exchanged, C remains the cross sample.
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Each MPP for all job family sub-samples is computed on a sub-sample of C. Thus there are two

independent unbiased estimates of MPP that can be computed from reversing the roles of

Samples A and B.

The average of the MPP computed for these two different roles of Samples A and B is the

value of MPP for each job family in a data set. Each such estimate of MPP is unbiased in that

the estimate of MPP is not inflated by back sample validity coefficients, "bouncing betas", or by

non-zero inter-correlation coefficients among the tests used to compute composite weights.

Clustering MOS into Job Families

There are at least two widely different approaches for clustering MOS into job families that

yield maximum MPP when the corresponding composites are used with a constrained LP

algorithm (using MPP as the objective function) to make optimal assignments. The one we

usually use produces families that maximize Horst's differential validity (Horst, 1954). The

approach starts with the inter-r matrix among the total set of MOS, e.g., m = 150, and

sequentially reduces m by one at each step by combining the two families whose merger

minimizes the reduction in Horst's differential validity. We could go all the way to m = 2, with

each set of families being optimal for maximizing MPP for that value of m, when LSEs are used

to assign recruits to families using a LP algorithm. The second approach starts out by producing

principal component (PC) factors, which are then rotated to simple structure and used to place

MOS into optimal families corresponding to each rotated factor. Each MOS is placed in the

family corresponding to the rotated factor for which its correlation coefficient is highest. This

approach starts with the same inter-r matrix, with the integer one placed in the diagonals, to

obtain as many principal component (PC) factors as there are tests available for use in the

composites. With our current data this would be 9 tests (7 tests if the current operational battery
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is used). These 9 PC factors would be rotated to obtain simple structure, and these 9 rotated

factors correspond to the composites to be used to make optimal assignments to 9 families. The

actual composites would be obtained as LSEs of these rotated factors based on the 9 tests as

predictors. The 9 job families for use in making optimal assignments would consist of the MOS

whose highest factor loading is on a particular rotated factor. Using the MOS in a particular

family, a second round of PC factors could be computed, rotated into simple structure and up to

9 sub-families within each of the initial 9 families identified.

Either of the two clustering methods just described can be utilized to determine the

relative benefits provided by different numbers of job families for a fixed test battery. The MPP

obtained by a process that includes a triple-cross validation design takes into account the effect

of sample sizes in computing validity coefficients and the varying inter-correlation coefficients

among the tests. Inflation and bouncing beta effects due to sampling error are eliminated. The

same approach, varied slightly, can be used to select tests from a larger set of experimental tests

as a means of maximizing MPP, while eliminating the effect of sampling error introduced by

optimal clustering in a back sample.

The 17 families proposed for use in generating an alternative set of second tier composites

were obtained by using the first approach described above except that possible membership in

these families was constrained to not cut across any of the 9 operational families. A similar

constraint could be imposed using the MOS in each of the 9 operational families to compute

inter-r matrices for the MOS LSE composites corresponding to each MOS in a particular

operational family. PC factors could then be computed and rotated to simple structure and the 17

sets of MOS yielding the cleanest simple structure identified.
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General Mental Ability

General mental ability (GMA) requires further definition before we can describe its role

in an effective classification process. Possible definitions sometimes used for GMA include the

following: (1) the entire set of cognitive tests in a test battery; (2) the largest principal component

(PC) factor in a factor solution for a battery; (3) the Brogden "g" factor which by his definition

fully determines the inter-correlation coefficients among the composites while contributing

nothing towards classification efficiency; (4) the proverbial "g" factor that is valid against most

performance criterion measures or academic grades, but contributes little to classification

efficiency other than through a hierarchical classification process whose benefits are obtainable

only by assigning the higher scoring individuals to the jobs whose corresponding composites are

most valid. To evaluate the classification efficiency of GMA (using definitions 2 and 4), a PC

factor solution of the MOS composites, yielding k factors, can be obtained. The k-i smallest

factors can be rotated into simple structure and the factor scores for each of these rotated factors

used for optimal assignment. If there are k factors, these factor scores can be used to make

optimal assignments to k job families that correspond to these k rotated factors. By the first

definition, all of these factors may be GMA while only the first PC (largest) factor is GMA by

definitions 2 and 4.

DAT includes a model of prediction variables that is used to optimally assign new

Soldiers to job families. This model most definitely is not based on specific factors to obtain or

to measure the benefits of optimal classification to the Army. Neither DAT nor Zeidner,

Johnson, and colleagues are proponents of specific factor theory. The factor model of the

predictor variables embedded in DAT is described in the following paragraphs.
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DAT considers the impact that the use of a single general factor (GMA) or, in contrast,

the impact a multiple (group) factor model of the predictors has on classification efficiency. The

inter-correlation matrix among composites based on group factors has a rank equal to the number

of tests (7) in the operational battery only when the number of families is 7 or less. These factors

can be used as assignment composites. Transformed group factors may also be used as

assignment composites with the number of composites ranging from 4 to 150. The matrix of

inter-correlation coefficients among transformed group factors will be less than full rank when

the number of composites exceeds 7.

The use of a single general factor score as the sole assignment composite can be used to

optimally assign recruits to job families, resulting in what DAT refers to as hierarchical

assignment. In hierarchical classification the individuals having the highest predictor scores

(AAs) are assigned to the job family whose predictor composite has the highest validity

coefficient, until the quota is filled. If the total set of recruits to be assigned is rank ordered on

their "g" scores, and, after optimal assignment, the same set of recruits rank ordered on their PP

scores based on these "g" scores, the rank order of each individual will be the same on both lists.

This is because optimal assignment to maximize MPP can be accomplished by first rank ordering

the families based on their average validity coefficients for "g ". Assignments to the m families

are then made in order of their average validity coefficients, starting with the most valid, and

assigning the Nj unassigned recruits with the highest "g" scores to the MOS with the highest

validity coefficients for "g" (Nj is the quota for thej-th family). If an optimal assignment

algorithm is used to maximize MPP when each PP is entirely based on "g", recruits with the

highest aptitude are assigned to the high technology MOS, and recruits with lowest aptitude to
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the combat arms MOS. Experience informs us that the prospect of making such assignments

would alarm most personnel assignment, training and general officers.

As one goes from one to four factors (as long used by the Air Force) to make optimal

assignments, the channeling of the higher aptitude recruits to the more highly technical MOS

decreases, but produces more such channeling than when nine LSE composites are utilized in the

classification process. While this channeling effect decreases considerably when 9 operational

(second tier) composites are used to make assignments, it does not totally disappear until an even

larger first tier battery is used.

Hubert Brogden's formula for estimating MPP after optimal assignment using least

square composites (LSEs) as assignment variables was derived by making the assumption that

validity coefficients of PPs could be described in terms of a factor model that included a "g"

factor and a specific factor corresponding to each job family. Brogden's "g" factor was defined

in such a way that it can make no contribution to classification efficiency, but does completely

explain the inter-correlation coefficients (r) among the composites. The validity coefficients (R)

are determined by the specific factors. All classification benefits are provided by these specific

factors. While Brogden used a specific factor model to derive the formula for BMPP, he

definitely did not believe such a model represented the personnel classification process, nor that

BMPP should be used as more than an initial approximation of the classification efficiency

provided by alternative sets of job families. Both Zeidner and Johnson were supervised by

Brogden during a period in which they separately worked on research projects intended to

increase classification efficiency. Both were continuously made aware of Brogden's views

regarding research on classification, and both knew that he accepted a factor model that included

group factors with high inter-correlation coefficients among the predictors. Brogden most
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definitely did not rely on specific factors to form his views on personnel classification, even

though such a claim is made by a number of "g" theory proponents, including the investigators

who believe that there is little more than "g". Schmidt et al. (1988) emphasized that the inter-

correlation coefficients among predictor composites could be above .95 and still bring about

significant improvement to classification efficiency as a result of optimal assignment.

Inconsistencies With Respect to TTCS and/or DAT

GMA, Number of Job Families, and Homogeneity

It is well known to psychometricians working in the area of personnel classification research

that optimal classification to a number of jobs can be accomplished using a single assignment

composite. A measure of "g" is almost always the most effective such composite. This

approach is often referred to as hierarchical classification because the highest scoring individuals

are assigned to the job families yielding the highest validity coefficients for this single

composite. A similar hierarchical effect may be present, but not necessarily dominant, even

when several composites are utilized if either the "g" component is dominant in some or all of

the composites and the validity of "g" varies across job families, or the validity coefficients of

composites with respect to their corresponding job families vary across job families. It seems

obvious that the smaller (larger) the number of job families, the more (fewer) MOS contained in

each family, and the more (less) likely that "g" will dominate some or all of the composites. It is

also clear that standardizing composites (i.e., converting them to have equal means and standard

deviations in a reference population) should reduce hierarchical effects.
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Role of GMA in Classification

The least credible position taken by the HumRRO report authors occurs when the authors

state that the decline in MPP as the number of job families (m) approaches 150 indicates that

differential validity "is attributable to GMA, not specific abilities and aptitudes" (p.28). The

authors also claim that the increase in MPP as m increases (up to a point) is attributable to higher

validity coefficients and that this trend is "largely a function of GMA". This statement ignores

the fact that GMA as measured by the first principal factor makes a smaller contribution to

classification efficiency than do each of the next two largest factors in a principal factor analysis

factor solution. As noted earlier, the "g" factor as defined by Brogden makes no contribution to

MPP. Also, it is clear that the percentage of valid variance due to prediction by GMA decreases

as the number of job families in a configuration (set) increases -- contrary to the statement by the

HumRRO authors cited above.

The HumRRO authors (p. 28) make an argument we believe can be clarified using the

following example. It is true that increasing the number of job families by 5 when starting from

a set of 10 families (m = 10 to m = 15) provides considerably more increment in MPP than when

starting with a set of 40 families and increasing to 45. The HumRRO authors argue that this is a

clear indication "that a substantial portion of the differential validity among jobs is attributable to

GMA, not specific abilities and aptitudes (p 28)". We maintain that the correct explanation of

this decreasing benefit, resulting from further increasing m after m reaches approximately 60, is

primarily the smaller sample sizes used to compute regression weights for the composites

associated with each family as i is increased. Thus, while MPP obtained from optimally

assigning individuals to m families always increases, for a specified value of R, as m is increased,

increasing m adds to validity shrinkage as measured in the independent cross sample. As m
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approaches the number of MOS having sample sizes that can support the computing of validity

coefficients, validity shrinkage has a greater negative effect on MPP than the positive effect of

increasing m.

A related explanation is provided by Brogden whose estimate of MPP, referred to as BMPP,

has a term f(m) which increases BMPP as it increases. This term is asymptotic to a value which

is closely approximated when m is 20 or larger. Thus, further increases in f(m) have virtually no

effect on the value of BMPP. Intuitively, the average inter-correlation coefficient among

composites (r) gets smaller and the average validity coefficient (R) gets larger as m increases.

Both of these two trends, for r and R, respectively would intuitively increase MPP-if it were not

for the increased shrinkage of R resulting from the smaller Ns used to compute regression

weights as m is increased.

Use of Differential Validity

The HumRRO authors use "differential validity" as an index of classification efficiency

throughout their report and appear to believe that such an index is a reasonable substitute for

MPP as a measure of classification efficiency. As noted in the above DAT section, Horst's index

of differential validity is equivalent to Brogden's estimate of MPP (i.e., BMPP) if, and only if,

Brogden's assumptions made in order to derive this formula are met. These assumptions

include: (1) the full explanation of validity by specific factors unique to each predictor

(composite), and (2) predictor inter-correlation coefficients are a function of a Brogden "g"

factor that completely accounts for these predictor inter-correlation coefficients while having a

zero correlation with the criterion variables. Neither Brogden nor we ever believed that

differential validity is an adequate substitute for MPP as a means of comparing classification

benefits provided by two different sets (configurations) of job families. However, we find
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Horst's differential validity index useful in clustering jobs into job families and Brogden's

BMPP index convenient in making preliminary estimates of benefits. It appears that the

HumRRO authors' reliance on the concept of differential validity has led them to unduly focus

on both the magnitude and standard errors of composite validity coefficients, rather than on

MPPs, except for near the end of their report where they describe a simulation experiment that

compared values and the standard errors of MPP. This focus on R has blurred the distinction

between classification and selection benefits in the HumRRO report discussion.

The use of ten Sample C sub-samples to compute standard deviations of the MPP

estimates provides a means of testing the statistical significance of the difference between the

MPP values provided by two alternative sets of job family sets (e.g., 9 vs. 66). Such a test would

provide the statistical significance of the differences in classification efficiency provided by two

alternative approaches. We believe this test of classification efficiency is superior to that which

is provided by a statistical test of the differences in the differential validity or validity

coefficients.

It should be clear that the standard error of unbiased estimates of validity coefficients

(between a best weighted composite and a criterion variable) where the regression weights are

computed in the same sample as are the correlation coefficients is quite different from the

standard error of unbiased validity coefficients where the validity coefficients are computed in a

separate sample from the sample where the regression weights were computed. When the

individuals used to compute the correlation coefficient have been placed in a sub-sample which

uses a specified composite through use of an optimal assignment algorithm, a standard error

computed as a function of sample size and size of the validity coefficient is an even poorer

estimate of an SE that pertains to the MPPs used to measure classification efficiency.
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First vs. Second Tier Job Families and the MPP Continuum

It should be noted that the sets of 9 and 17 job families and corresponding test composites

are intended only for the second tier and there is little reason for either of these batteries of test

composites to be compared with first tier sets of job families and corresponding test composites

in terms of their classification efficiency. Thus, there is no logical reason to compare in terms of

MPP either the 9 operational job families or the 17 job families derived from these 9 with the 40,

66 or 150 optimally clustered sets of job families. The first tier composites and job families are

designed to achieve a radically different kind of benefit, i.e., classification efficiency, than the

second tier composites and job families.

The first tier job family configurations of sets of 9 and 17 job families is unfortunately

treated by the HumRRO authors as two points on a continuum consisting of the effect on MPP of

the number of composites (m) in job configurations extending from m = 9, through m = 17 to m =

150. In fact, the m = 17 configuration described in the HumRRO report is a shredding out of the

m = 9 configuration. The m = 9 configuration is based entirely on judgment that included

administrative and military policy considerations. Each of the m = 9 job families is equal to the

aggregation of job families of selected m =17 configuration job families. When m = 9

configurations and m =17 configurations are formed by using the optimal clustering algorithm

provided by Horst (1954), the differences in MPP between these two optimally clustered

configurations of m = 9 and m = 17 are considerably greater, as well as having higher values of

MPP for both configurations, as compared to families (with m = 9 and m = 17) obtained by

judgment. It is unfortunate that HumRRO did not choose to examine the effect on MPP of using

optimally clustered m = 9, m = 40, 66, 80 (or some other midway values of m), and m =150 to

show the effect of size of m on MPP. As noted above, the m = 9 and m = 17 configurations
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examined by the HumRRO authors were intended for possible use in the second tier and thus

never recommended by Zeidner and Johnson for use in the classification process. Because of the

configurations the HumRRO authors chose to examine, the evidence provided by the HumRRO

authors does not elucidate the impact of m on MPP.

The continuum of MPP as affected by increasing the value of "i" when job families are

optimally clustered using Horst's technique, and non-standardized, has been determined as

follows: Starting with m = 4 paired with MPP = .1207 we can describe a continuum of pairs of

m and MPP representing f(m) = MPP as follows: f(4) = .1207; f(6) = .1387; fQ) =:1662; f( 1)

=.1758; f(13)=.1720; f(15)=.1882; f(L7)=.1931; f(21) =.1979; f(25)=.2032; f40)=

.2118; f(66)=.2120; f(85)=.2104; f(104)=.2068; f(127)=.2025;f(150) =.195(Zeidner,

et al., 2000). These MPP values are obtained from PPs scaled to provide a zero value of MPP in

the Army input population. It is interesting to note that in the same study, the MPP provided by

the selection process using PPs with a mean of zero in the youth population was .167. Thus the

values of MPP using PPs scaled to have means of zero in the youth population (in contrast to the

use of the input population to scale PPs used in computing MPPs for measuring classification

efficiency) are equal to the above values of MPP scaled to the Army input population plus. 167.

The difference in MPP due to classification between m = 9 and m = 66 was shown to be slightly

more than one-fourth of the MPP provided by selection.

MPP and Standardization

When discussing the use of standard scores, we are referring to a two step process in

which PP scores which have been corrected to the Army input population are corrected to

statistical standard scores (SSS) that have a mean of zero and an SD of 1.0 in the Army input

population: SSS = (SD of PP)j / Rj , where Rj is equal to the validity coefficient for the jth job
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family; and followed by computation of an Army standard score (SS), which has a mean (M) of

100 and an SD of 20 in the youth population, for the jth job family: (SS)j = [ (SSS)j + Aj ] / Bj,

where Aj and Bj are constants for each job family and are selected to correct for both restriction

in range due to the selection process and the change of scale from M = 0 to M = 100 and from

SD = 1 to SD = 20. One notes that Rj is smaller for combat arms and other MOS for which

performance is less dependent on GMA-such as MOS for which performance is predicted by

mechanical, other vocational or gaming skills that are measured by group or specific factors.

The standardization process that converts from PP scores to SSS scores for a job family

composite reduces MPP more for MOS primarily predicted by GMA than for other MOS. The

second step, standardizing from SSS to SS, inserts noise through use of the Aj and Bj constants

that further reduces MPP. Reduction in MPP due to both steps is greater for MOS for which

selection variables such as AFQT, high school graduation, second tier cut scores and police

records have a higher correlation coefficient with the MOS performance criterion variable.

Intuitively, standardizing composites reduces the total MPP while also increasing MPP for most

combat arms MOS at the expense of decreasing MPP for the other MOS.

The HumRRO authors make the point that, "MPP estimates tended to be systematically

lower when weights were standardized," and that, "evidence for the significant interaction

between standardization and job configuration can be seen in that differences in MPP by

standardization increased as the number of jobs increased." We have noted this same

relationship for more than a decade but completely disagree with the HumRRO authors as to the

operational implications of this relationship. We believe that this indicates the desirability of not

converting PPs to a scale which provides equal SDs when classification efficiency is the sole

objective (i.e., as is true of first tier composites). We agree that it is appropriate to standardize
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composites to have equal SDs when the primary objective is to determine whether a minimum

cut score is met by a recruit or applicant for assignment to a specific job (i.e., as is true of second

tier composites).

While we believe that standardizing composites is desirable for second tier composites,

we believe, contrary to the position taken by the HumRRO authors, that standardizing the first

tier composites is undesirable because of the resulting decrease in MPP. The HumRRO authors

argue that this decrease should be accepted as the price of obtaining an increase in MPP in

certain critical MOS. However, this latter benefit could probably be obtained with a much

smaller reduction in MPP by constraining expected MPP in these critical MOS to be above a

specified value during the optimal assignment process in Sample C in order to compute MPP.

This doubly constrained process, to meet quality standards and quotas, could then be duplicated

in the optimal assignment process for providing operational assignment recommendations by an

algorithm that duplicates this effect for each set of recruits.

The HumRRO report authors argue that the increase in MPP provided by the first tier

composites as m approaches 150 would be lost by operational efforts to maintain desired quality

standards in those MOS that yield lower validity coefficients (e.g., combat arms and other

relatively non-technical MOS). We have previously noted that MOS or job families with lower

validity coefficients are likely to have lower MPP and we agree that this is undesirable, but we

believe the solution proposed by the HumRRO authors is akin to throwing the baby out with the

bath water.

It is not known at this time whether the higher MPP obtained from using non-standardized

composites and/or a larger value of m would be negated by operational decisions; this is one of

the issues we hoped to clarify in a field test. Since all recommended assignments are expected to
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be implemented only if not rejected by the recruit or modified for operational reasons, we had

not included the additional complication of constraining optimal assignments to provide a

desired quality distribution across MOS. However, rather than following the HumRRO approach

to meeting operational constraints (without empirical evidence), we propose the conduct of a

simulation experiment in which optimal assignments are constrained to meet the desired quality

distribution using m equal to 9, 66, 80 and 150. This additional constraint could be

accomplished by adding constants to the PP scores that would raise the mean PP scores in critical

MOS to a desired minimum level during the simulated optimal assignment process using Sample

C sub-samples. We believe the first tier would provide a significantly higher total MPP value for

job families with m between 40 and 85, as compared to the MPP provided by the second tier job

families, when the optimal assignment algorithm includes this additional constraint.

Experimental Design Issues

The psychometric literature commonly defines the double cross-validation design in

terms of two samples drawn from the same universe (e.g., A and B) in which best weights are

computed for one sample (A) and applied to the scores of a second sample (B) to compute LSEs

that are then validated in that second sample. The triple cross-validation design, as used by

Johnson and Zeidner and other practitioners of DAT for more than a decade to compute unbiased

estimates of MPP, utilizes a third independent sample (C) to accomplish the optimal assignment

process and to then compute MPPs. Samples A and B provide two independent sets of

regression weights that are used to compute pairs of LSEs of the criterion, for each job family for

use in Sample C. One of these pairs of LSEs is designated as the analysis LSE (e.g., weights

computed in Sample A) and the other is designated as the evaluation LSE (e.g., weights

computed in Sample B). The optimal assignments are made in Sample C using the analysis
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LSEs and the evaluation PPs are used in Sample C to compute MPP values for each job family.

The roles of Samples A and B in computing either analysis or evaluation PPs is then reversed,

providing two distinct estimates of MPP that are averaged to provide the MPP for each job

family. On page 22 the HumRRO authors imply that Zeidner, Johnson, and Associates have,

until recently, used the traditional double cross validation design to compute values of MPP,

when in fact only the triple cross-validation design has ever been used by Zeidner and Johnson

when using actual data in research to determine classification efficiency, in contrast to using

synthetic scores randomly generated from estimates of population values. The HumRRO authors

correctly describe the triple cross validation design on pages 23-24 but incorrectly refer to it as a

double cross-validation design.

We agree with the HumRRO authors (pp. 14-16) that the use of data to optimally cluster

MOS into job families that is not independent of the data used to compute MPP values will, to an

unknown extent, inflate the positive relationship between the number of job families (m) used to

compute MPP and the magnitude of MPP. A simple modification of the triple cross-validation

design would completely eliminate this source of sampling error in both the clustering of job

families and the computing of regression weights. Both sources of this sampling error can be

eliminated by using Sample A to cluster MOS into families and compute regression weights for

AAs, while Sample B is used to compute regression weights for PPs. The roles for Samples A

and Sample B are then reversed.

The HumRRO report authors (pp. 23-24) describe a design that is similar to the DAT

triple cross-validation design but differs in that their Sample C contains 49 sub-samples of 5,000

instead of 20 sub-samples of 1,000 cases. Each of their 49 Sample C sub-samples is used in

conjunction with one half of the data that remains after the removal of each Sample C sub-
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sample. One half of each such data pair is used as an analysis sample to compute regression

weights for the AA composites and the other half as an evaluation sample to compute regression

weights for the corresponding PP composites, with both the AA and PP composites used in the

Sample C sub-sample to make optimal assignments and compute MPPs for each job family.

Each of HumRRO's 49 estimates of MPP are computed using highly overlapping analysis and

evaluation samples to compute regression weights for the 49 different estimates of MPP.

In this type of HumRRO design, MPP is computed as the average of 5 Sample C sub-

samples with 1,000 cases in each of the 49 sets of sub-sample to create 49 separate (but far from

independent) estimates of MPP. In the Zeidner and Johnson design, MPP is computed as the

average of 20 Sample C sub-samples using only two independent estimates of regression weights

for each configuration, providing an estimate of MPP for each configuration based on the

average of 40 computed values of MPP, whereas the HumRRO design provides for computing

49 estimates of MPP to be averaged into a single estimate of MPP for each configuration. The

standard deviations of the MPP estimates for each configuration involve using two independent

sets of regression weights in the Zeidner and Johnson design, in contrast to the 49 different but

overlapping samples for computing regression weights in the HumRRO design. We agree that

the HumRRO design makes a better use of the total data set to provide a more stable estimate of

MPP for each configuration, but does not provide as good an estimate of the standard error of

MPP as does the Zeidner and Johnson design.

Valuation of Classification Gains

In the HumRRO report (p. 32), gains in MPP from using the m = 17 or m= 150

configurations are dismissed as follows: "...differences in mean predicted performance (MPP)

among the 9, 17, and 150 AA test composites were not practically significant, especially after
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taking into account estimation error in MPP." Nord and Schmitz (1999) argue, using the

"opportunity cost approach" widely accepted by economists, that two Army standard score

points improvement in the mean score for the AA composite corresponding to the MOS to which

each recruit is assigned, is worth over 600 million dollars using a 1984 data set. A set of

optimally assigned full least square composites for 9 job families was contrasted to the existing

integer weighted composites as the baseline. Using the opportunity cost method the gains in

predicted performance and costs of recruitment, retention, and training are compared for the two

systems to estimate what it would cost to obtain the mean predicted performance obtained by

LSEs of composites which are LSEs of performance criteria by raising the selection standards

while retaining the then current AAs. It is hard to see how the gains in MPP provided by the m =

150 configuration, in contrast to those provided by the m = 9 configuration, can be so readily

dismissed by the HumRRO authors.

Potential Contribution of Non-Cognitive Variables

The HumRRO authors claim (p.3 4 ) that, "...non-cognitive variables, specifically

personality and vocational interests, could greatly extend the classification potential of

cognitively-based composites". Zeidner and Associates have used the clustering technique of

Horst to sequentially select tests from an experimental battery so as to maximize differential

prediction. In one study (Johnson, Zeidner, and Scholarios, 1990), the best 10 of the 29 Project

A predictors were sequentially selected to maximize Hd (Horst's index of differential validity).

The best three tests for classification efficiency were cognitive tests and the fourth best test was

an interest test. The selection order of the five selected cognitive tests was 1, 2, 3, 5, 8, and the

selection order of the four selected interest tests was 4, 6, 7, and 9. The selection order of the

single selected "perceptual-psychomotor" test was 10. In contrast, for an ARI experimental
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battery developed earlier, the non-cognitive tests were selected (using a thumbnail index of

differential validity) much earlier in the sequential selection process (Helme, 1965). The non-

cognitive tests in the ARI battery were primarily self description tests with empirically

developed keys using performance in several different areas as the criteria - compared to the

factor based personality tests in the Project A battery that were not included among the first 9

tests selected from the Project A battery. The interest tests (AVOICE) of the Project A battery

faired fairly well but none were selected as early as the non-cognitive tests in the earlier ARI

battery, while none of the "job orientation composites" (JOB) nor "temperament and biodata

composites" of the Project A battery were in the first 10 selected (see Personnel Psychology,

1990).

We are definitely not saying that the existing cognitive test battery would not have its

classification benefits increased by the addition of appropriate non-cognitive tests or measures of

job knowledge or vocational aptitude focused on vocational domains differentially relevant to

Army jobs (e.g., electrical, mechanical, automotive, engineering technology). We are saying that

the kind of non-cognitive variables included in the earlier batteries (e.g., Helme) are better

predictors of performance criteria than are tests based on personality theory.

Summary of Objections

The authors of the HumRRO Report present DAT in such a way that it is easy to

challenge whether DAT supports the various benefits alleged to be provided by the TTCS. The

HumRRO report appears to adopt the strategy of the early "g" theorists who proclaimed that

there is "little more than 'g' "in valid predictors, and suggest Horst and Brogden are supporters

of the specific factor theory. According to the "g" theorists, benefits from the use of multiple test
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batteries in classification and assignment rely on the successful matching of specific factors to

job families. Since few researchers give much credence to such a specific factor theory,

including Horst and Brogden, and more recently, others who give credence to DAT, the

accusation that a theory or process relies on the use of specific factors is a harsh indictment that

should be proved whenever made.

The HumRRO authors argue for an evaluation model that is appropriate for determining

the efficiency of selection, but not for personnel classification. Using this argument they claim

that samples used to compute regression weights for a composite must each be at least 2,000 to

avoid validity shrinkage in the cross sample to an extent that would remove all benefits provided

by "best" weights for test scores, reducing cross validity coefficients to the level provided by

"g ". They rely on the examination of standard errors, instead of on cross sample results, to reach

this conclusion.

The HumRRO authors make frequent reference to the impact of GMA (i.e., "g") in their

arguments against expanding the number of composites beyond 9. Some of their arguments are

similar to Air Force "g" theorists who appear to be proposing the use of a single family with a

single composite that measures "g" (Ree & Earles, 1994). The AF still uses 4 job families with

corresponding composites. We assume the number of composites was originally reduced to 4 to

correspond to the number of non-trivial group factors that results when the correlations among

the operational sub-tests are factored using a PC solution and then rotated to simple structure.

Surprisingly, the HumRRO authors do not deal with the obvious problems that come with

the alternative to making use of empirical small sample data for computing R and r. The

alternative is to rely on judgment to determine which of the 9 operational composites best

predicts performance in the MOS represented by small families. We have no qualms with using
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judgment to reduce 250 families to 150 families by aggregating the 100 families with the

smallest Ns with the 150 families that were formed by using empirical data to minimize MPP in

the clustering process. There is almost always a job family which is clearly very similar to the

small-N MOS being considered for placement. In contrast, we don't feel that one can justify

using judgment to assign each of the 250 MOS to one of the 9 operational job families, and to

then use the optimal assignment process to assign recruits to one of the 9 operational job families

and to one of the 250 MOS. The latter step reflects the judgmental relationship between the

MOS and the nine job families.

Conclusions and Recommendations

The HumRRO authors display a serious misunderstanding of the structure and purpose of

the TTCS, and misinterpret DAT at several points. In addition, they appear to be overly

influenced by the "little more than 'g' "dogma of the "g" theorists as the basis of their

evaluation of the second tier battery (Ree & Earles, 1991). They appear to be making an effort to

resell the "g" theorist position that only measures of general ability are stable enough to form the

core of an operational test battery. Their misunderstanding of the TTCS and DAT, combined

with their devotion to this dogma, makes many, if not most, of their recommendations pertaining

to TTCS either inappropriate or wrong. However, it appears that they are not completely

converted to "g" theory dogma, since they seem to agree with us that LSE weights applied to

each test in the battery are appropriate for use in the first tier battery.

The HumRRO authors made a valuable contribution in their earlier report by checking

the estimation of the second tier composite regression weights. For years we have been

advocating that the regression weights for the nine standardized composites, constrained to be
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positive, be independently checked, and recently ARI contracted to have this check made by

HumRRO. Future researchers should seriously consider using their multi-sample cross-

validation design to compute MPP for each job family and condition. However, the HumRRO

research design should not be used to compute standard errors of MPPs because of the overlap of

their analyses and evaluation samples across each pair of Sample C sub-samples.

The HumRRO authors express a number of opinions that could be tested empirically, and

simulation experiments would be appropriate for examining some of these opinions. The first set

of such opinions relate to the relationship of the number of composites in a configuration (m) to

the magnitude of MPP. The HumRRO authors failed to consider that the MPP obtained for

configurations with m = 9 and m = 17 are considerably less than would be provided by optimally

clustering MOS into job families using the Horst algorithm. Families formed by judgment

affected by administrative and political considerations provide lower values of MPP than those

formed using Horst's algorithm in forming job families. We believe this is still true when job

families are formed in the analysis sample - i.e., in the same sample in which the regression

weights are computed for the AA composites. While we agree with the HumRRO authors that

some inflation in MPP results from using job families optimally clustered to maximize

differential validity in the total sample (rather than in Sample A), we will be surprised if this

inflation is great enough to seriously affect the gains in MPP provided by using more than 9 job

families for classification and assignment.

The change in MPP as m increases should have been computed using optimally clustered

configurations for m = 9 and for each other value of m between 9 and 150 for which MPP is

obtained. The HumRRO authors' interpretation of the meaning of the changes in differences in

gains in MPP between different values of m would have made more sense if they had obtained
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such empirical results. Zeidner and colleagues have examined such a continuum (Zeidner, et al.,

August 2000, p. 51) and have found that the increase in MPP gradually decreases but remains

positive with the increase of m until somewhere around m = 80 where the increase of MPP

becomes negative and MPP starts to very gradually decrease. This should be confirmed by using

a design that includes forming families in the same sub-sample (A or B) that is used to compute

regression weights.

The second set of opinions that should be empirically checked relates to the HumRRO

authors' statements regarding the effect that operationally applied constraints would have on the

benefits of values of m greater than 9. The authors appear convinced that the operational

application of quality constraints regarding key MOS would eliminate the gain in MPP provided

by using non-standardized composites and/or a higher value of m. This can be readily checked

by a simulation experiment in which the optimal assignments are constrained to meet quality

constraints in key MOS, in addition to meeting MOS quotas.

Early in the report the HumRRO authors appear to base their conclusions regarding the

probable benefits of using more than 9 job families and associated composites to make initial

classification and assignment of recruits largely on the basis of the larger standard error of R

obtained in the smaller MOS, supported by comparatively vague references to "bouncing betas",

high values of r, and small sample size (as small as 200 in several families when m = 150) in our

data set for a few of the 150 families.

The HumRRO authors' use of analysis of variance tests of the significance of differential

validity coefficients (R) to determine classification efficiency does not comprise a defensible

substitute for comparison of MPP across conditions of interest. For example, the sampling

distribution of R when families are based on judgment is not readily comparable to when the
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families are obtained by maximizing R. Also, classification efficiency as determined by MPP is

a function of the average magnitude of composite inter-correlation coefficients (r), and a

function of m (as described by Brogden) as well as R.

We recommend that ARI conduct simulation experiments in which optimal assignments

are constrained to meet both MOS quotas and quality constraints for first tier configurations of m

= 9, 25, 40, 66, 75, and 150 in both the standardized and non-standardized versions of PPs. The

clustering of MOS into families should be accomplished separately in Sample A and Sample B.

The use of either our triple cross validation design or HumRRO's modified design could be used

for computing MPP, but not for computing the standard errors of MPPs. Either way optimal

constrained assignments would be made in Sample C sub-samples. If results are sufficiently

promising, a second experiment - which uses an algorithm equivalent to the doubly constrained

linear program - should be conducted to demonstrate an operationally practical algorithm for

making recommended doubly constrained optimal assignments for use by counselors.

We also recommend that the classification efficiency of the non-cognitive measures in

the Helme experimental test battery (Helme, 1965) be compared to that provided by the non-

cognitive tests in the Project A battery and formed (with the additional tests obtained by

implementing the most promising of the non-cognitive test concepts proposed by Helme and

other in-house ARI scientists) into a battery of experimental tests for a research effort to

sequentially select the best tests for improving classification efficiency. Such research could

greatly improve the classification efficiency of the ASVAB.
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